Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter

نویسندگان

  • Xianhong Xie
  • Dongxiao Zhang
چکیده

a r t i c l e i n f o Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system. Understanding the response of a river catchment to atmospheric forcing is critically important to climate studies, agriculture (irrigation planning and vegetation and crop growth), natural hazards prevention and mitigation (e.g. floods and droughts), and other water resources managements (e.g. water transfer and storages). These studies are highly dependent on advanced simulation models and large amounts of environmental data that are increasingly being made available. Hydrological models are built based on a set of principles coupled with a number of assumptions and imperfectly defined parameters, and measurements are usually scarce in space and discontinuous in time. These result in great uncertainties about the measurements, model structures and parameters. In applications, numerical hydrological modeling generally requires estimation of model parameters through calibration with observed data to mitigate the output uncertainties. Many calibration methods have been developed, including the automatic calibration with multiple objectives or criteria [20,24,32]. But …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering

Accurate streamflow predictions are crucial for mitigating flood damage and addressing operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, we implement two ensemble-based sequential data assimilation methods for streamflow foreca...

متن کامل

Discharge assimilation in a distributed flood forecasting model

In the field of operational flood forecasting, uncertainties linked to hydrological forecast are often crucial. In this work, data assimilation techniques are employed to improve hydrological variable estimates coming from numerical simulations using all the available real-time water level measurements. The proposed assimilation scheme, a classical Kalman filter extension to non-linear systems,...

متن کامل

Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data

In the present study, we focus on the assimilation of satellite observations for Surface Soil Moisture (SSM) in a hydrological model. The satellite data are produced in the framework of the EUMETSAT project H-SAF and are based on measurements with the Advanced radar Scatterometer (ASCAT), embarked on the Meteorological Operational satellites (MetOp). The product generated with these measurement...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Error modeling of simulated reflectivity observations for ensemble Kalman filter assimilation of convective storms

[1] The impact of two different ways of modeling errors in simulated radar reflectivity data for observing system simulation experiments (OSSEs) with an ensemble Kalman filter is investigated. An error model different from the one used in earlier studies is introduced, and it specifies relative Gaussian-distributed errors in the linear domain of the equivalent radar reflectivity factor. This mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010